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A plane finite elastic domain containing a physically non-linear inclusion is considered. The problem of determining the loads 
acting on the outer botmdary of the domain that produce a given uniform stress-strain state in the inclusion is formulated and 
solved. © 2000 Elsevier Science Ltd. All rights reserved. 

It is well known [1] that an ellipsoidal elastic inclusion in an elastic space that is subject at infinity to 
the action of finite stresses will be in a uniform stress-strain state (SSS). This result was extended in 
[2] to the case of a physically non-linear inclusion in an infinite elastic space. This raises the question, 
whether one can realize a uniform SSS in an inclusion of arbitrary shape contained in an elastic domain 
of finite size. This problem will be solved here in a two-dimensional formulation. 

1. F O R M U L A T I O N  AND S O L U T I O N  OF THE P R O B L E M  

Consider an isotropic finite elastic domain S with a physically non-linear inclusion S*, under 
conditions of plane deformation or a generalized plane stressed state. The outer boundaries of 
both the domain and the inclusion are assumed to be simple closed contours, denoted respectively by 
L and L* (i.e. the latter separates the elastic medium from the inclusion). Hooke's law is assumed to 
hold in the domain S; in both cases of the two-dimensional problem, Hooke's law may be written in 
the form 

81.t~;,t. t =(×-l)o,,, ,Skt +4c°t ,  k, l = 1, 2 (1.1) 

where cr°t and ~kt are the components of the two-dimensional stress deviator and the unit tensor, Ix is 
the shear modulus, × = 3 - 4v in plane deformation or × = (3 - v)/(1 + v) in a generalized plane 
stressed state (v is Poisson's ratio) [3]; repeated indices signify summation from 1 to 2. The coordinate 
system Oxlx2 is chosen so that (0, 0) ~ S*. 
We will write the equations for the inclusion S* in the following general form 

ekt = F~t(a*,,, ), k, l, m, n = I, 2 (1.2) 

where Fkt are, generally speaking, non-linear operators (for example, for a viscoelastic-plastic medium, 
exhibiting the properties of physically non-linear creep [4]), which in special cases may be functions 
(linear and non-linear elasticity, plasticity under simple ways of loading, etc.). 

We will formulate the main problem, which may be classified as an inverse problem: it is required 
to determine the external loads on the boundary L so that the SSS thus produced in the inclusion S* 
will be a given uniform state (i.e. independent of the coordinates xk), characterized by components 
cr~l and e~a (k, l = 1, 2) satisfying relations (1.2). It is assumed that the load field produced at the boundary 
L*, which we denote bypk = crklnt (where n, are the components of a unit vector normal to L*) and 
the displacements uk are continuous (k = 1, 2). The problem is considered in a geometrically linear 
formulation. 
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To solve the problem we define in S* a stress function U* = U* (z, ~), where z and ~' are treated as 
two independent complex variables [5] (U* may also depend on the time t if cr~t = (r~t(t)). Since [5] 

, , ~ 2 U *  , • . , 

ott +o22 =4  c-)zO:5 ' O22--OII +2t(Y12 =4 ()2U*oz 2 

and crT, t is independent of xl and x2, and hence also of z and z, it follows, neglecting terms linear in 
z and z that have no effect on the stressed state, that 

2U '~ = AzZ + Bz 2 / 2  + ~ 2 / 2  (1.3) 

2A = 0 ~  +O22, 2B=o22 -o l t  +2to12 

Since the stresses transmitted across the boundary L* are continuous, the function f = 2aU/O"z, 
introduced in [3] must be continuous on it; therefore, by (1.3), 

23U / 0~. = Az + -B~ on L* (1.4) 

where U = U(z, z)  is the stress function for the domain S. 
We will express the complex displacement w* = u~ + iu~ in S* in term of eT, l. It follows from the 

Cauchy relations that [5] 

23w*/b~. = ell - e22 + 2tej2, ~ w * l b z + b ~ * l b ~ = e . l l + e 2 2  

Hence, taking into account that e~l (k, l = 1, 2) are independent of z and 2 and assuming that 
w*(0, 0) = 0, we obtain 

2w* = Cz + D-~ 
(1.5) 

C=E]l +E22 +2tE , D = E;II -E22 +2i~ 2 

where e* is an arbitrary constant, equal to the value of the "rotation" in S*. 
Consider a conformal mapping of the infinite domain exterior to L* (and containing S) onto the 

exterior of the unit circle ~/* of the complex ~ plane, of the form 

Z = 0)(~) = ml~ + ~ m_k~ -k, ~ = peiO (1.6) 
k=l  

Then relations (1.4)-(1.6) for p = 1 yield boundary conditions for the functions ~o(0 and ~ ( 0  that 
define the SSS when [~] > 1 [3, 5]: 

×~tp(o)-co(o)q/(o)/c0'(g)-~g(o) = Fk(o) (k = 1, 2) on y* 

o = e  i°, × , = - I ,  ×2= × (1.7) 

hi(O) = -Ao) (0 i -  Boo(o), F2(O ) = I.t[Co3(o)+ DO3(o)] 

It follows from (1.7) that 

(× + I ) q~(o) = (A + lttC)c0(o) + (B + laD)co(o) on y 

Hence, using well known methods [3, 5], we obtain 

tp(~) = [(A + ~tC)co(~) + (B + ~D)~(~ -~ )]/(× + I), I ~ 1> I (1.8) 

where we have used the equality ~(~-1) = to(~--1) [3] and taken into account that by (1.3)A = A. 
For the known function q~(~) we have [5] 

V(~) = -~(~- '  ) -  ~(~- '  )r~'(~)/co'(~)- ~(~-~ ). I~ I> 1 (1.9) 

~ (~-' ) = - A ~ ( ~ - '  ) -  B o . ) ( ~ )  
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Substituting (1.81 ) into (1.9), we find that 

V(~) = { (×B - ktD)og(~) + [(× - I)A - 2kt Re C] to I (~) - 

- (B + ktO)o31 (~)o3~ (~)/00"(~)}/(× + I), ogj (~) = ~(~-l), ]~ l> I (1.10) 

As can be seen from (1.6). (1.8) and (1.10), the functions tp(E) and t~(E) are holomorphic in the 
ring 1 < IEI < R, where R -1 = lim Im_.l TM as n ---) 0% which is possible i fR  > 1. In particular, if 
the mapping function to(E) contains a finite number of terms under the summation sign in (1.6), then 
R = oo. 

To find the required external loads, it will suffice to determine the values of the aforementioned 
functionf(z, z ) = 2 0 U / ~  on the boundary L. Puttingf[to(E), to(E)] = F(E, ~) we have [3] 

F = ¢p(~) + ¢o(~)q0'(~) / ¢o'(~i + V(~) 

Substituting qo and t~ into this equality from (1.8) and (1.10), we obtain 

F(~, ~) = { [2(A + l.t Re C) + (B + uD)co~ (~) / 6o'(~)](¢o(~) - ~, (~)) + 
(1.11) 

+(B + I.tD)(¢o, (~) - ¢o(~))}/(× + !) + A¢o, (~) + B¢0(~) 

Let us assume that the contour ~ in the E plane corresponding to the boundary L of S lies entirely 
in the ring 1 < I E I < R. Let z = 12(E1), E1 = Pl ei°l be a conformal mapping of the domain S* tO S onto 
the interior (or exterior) of the unit circle of the E1 plane. Then on ~/we have 

= F3(oa), &(crl)=--to-)(D(oj)], o, = e  i°' 

(to-a denotes the function inverse to to; to-a exists, since to'(E) ~ 0 for IEI > 1). Substituting this 
expression into (1.11), we find the value of the funct ionf  on the unit circle of the El plane to be 

fl(O'l )= F[~(o l ) ,  Fa(Oi)l 

The components of the external loads that must be applied at the boundary L are precisely the 
components of the ,;tresses or01 and %01 in the curvilinear coordinates (Pl, 0a) associated with the above- 
mentioned conformal mapping, for Pl = 1. These stresses are defined as follows [5]: 

op, +iooe I = f((frI)/f2'(O)) (1.12) 

Note that the functions ~ and t~ of (1.8) and (1.10) that define the SSS for [El > I are expressed solely 
in terms of the mapping function to (for given components trot and e~t in S*) associated with the form 
of the boundary L*. The outer boundary L has no influence whatever on the SSS; the required loads 
on it are determined by its geometry and by the already determined functions qo and t~. In this sense, the 
solution may also be continued beyond L, provided that the values of [ E [ lie in the ring 1 < [ E [ < R. 

2. THE U N I Q U E N E S S  OF THE S O L U T I O N  OF THE P R O B L E M  

As can be seen from formulae (1.8) and (1.10), given the SSS on S* (that fs, given ~r~t and e~l), and 
provided that the contour ~/corresponding to L lies in the ring 1 < I EI < R, a solution for the SSS in 
S exists and is unique. This follows from the fact that the functions ~o(E) and +(E) of (1.8) and (1.10) 
do not contain logarithmic terms and the arbitrary constant 2e* -= Im C occurring in (1.8) has no effect 
on the SSS. There will be no arbitrariness in the definition of tp(E), if the magnitude of the rotation e* 
is given in S*. By *(1.12), the SSS thus determined in the domain S uniquely defines the required loads 
on the outer contour L. 

We will now show that the converse is also true: given the loads on L as in (1.12), and assuming that 
certain restrictions are imposed on Eqs (1.2), the SSS thus realized in the domain S* tO S is precisely 
that considered abcwe, that is, the inclusion will be under conditions of a uniform SSS. 

In the interests of greater clarity, let us make Eqs (1.2) somewhat more specific, while still leaving 
them fairly general [6]: 

~i  t = a~t,,,,,o,',,,~ + e~ ¢, k. l = 1, 2 (2.1) 
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Indeed,  if e~ N = 0, the inclusion is linearly elastic; in particular,  if it.is isotropic, Eqs (2.1) take the 
form of  (1.1) (with specific constants ×* and I~*). Ifa*umn = 0, but  e ~  = ekt = (¢rmn) are known functions, 
the inclusion is non-l inearly elastic or subject to the deformat ion  theory  of  plasticity. In the general  
c a s e  (aklmn ~ 0 ) ,  *N * ekl are irreversible deformat ions  (plastic, viscous, c reep  deformations,  or  sums of  all 
these deformations) .  

The  above-ment ioned  restrictions correspond to s tandard assumptions on the stab!lity of  the 
. . . . . . .  *N N * deformat ion process,  which, for  a hnearly or  non-hnear ly  elastm inclusion, when eu = ekt = (%,n), 

reduce to the following relations (where A denotes  an increment )  [4] 

akh,,,,AG~.~AG,,,, , > 0, Ae~.t AGkt > 0 if AGktAGk/ ~ 0 (2.2) 

*N In the case when ekl are irreversible deformations,  the analogous condit ion is [4, 6] 

i "*N * A~kt AG~tdt > 0 (2.3) 
0 

where  t is the t ime (for  viscous media)  or  the load pa rame te r  (for plastic media).  
Inequali t ies (2.2) and (2.3) become  equalities only if Acr~l = 0 (k, 1 = 1, 2). 
With these loads on L and under  condit ions (2.2) or  (2.3), the SSS in S* U S is uniquely defined. 

Indeed, let us assume that, besides the solution just determined, another SSS exists; denote the differences 
between corresponding quantities by the symbol A. Then, by the equation of virtual work and the continuity of 
the loads and displacements on L*, we have [4, 7] 

Ae~tActtdS + ~ Ae*ktAc~tdS = 0 ( 2 . 4 )  
S S* 

Substituting Eqs (1.1) and (2.1) into (2.4) and taking (2.2) into account, we obtain Atria = 0 in S and 
A~r~ = 0 in S* (k, I = 1, 2). 

If the stability condition is (2.3), we can replace Eq. (2.4) by a similar one, with the strain increments Aekl and 
Ae'kt replaced by their rates. After integrating the resulting equation with respect to time from zero to t and using 
(2.3) and the equalities 

AOt.llt= o = Ao~/lt= o = 0 

which follow from the uniqueness of the solution corresponding to time t = 0 of the elastic or viscoelastic problems 
(of which we spoke above), we find, by analogy with a previous publication [4], that ACrkt = 0 in S and A~r~t = 0 in 
S* for t  > 0. 

3. E X A M P L E S  

Using well-known relations for  the stress components  in the curvilinear coordinates  (p, 0) associated 
with the conformal  mapping z = ~0(0 [3], 

GI, + G 0 = 21~(~) + ~(~)1 

G 0 - Gp + 2iGpo = 2~2p -2 [C0(~) @'(~) + ~'(~)] / C0"(~) 

and substituting the functions tp( 0 and qJ(~) from (1.8) and (1.10) into these relations, we obtain (l~l > 1) 

Gp + G o = 4 Re[A + p C +  (B + gD) c02 (~)]/(× + I) 

G o - G 0 + 2iGo0 = 2e 2i° { (B + gD)[to(C) co~ (¢) - (co I (¢) o) 2 (¢))'1 + 
(3.1) 

+(xB - l.tD) c0'(~) + [ (× - I)A - 21.t Re C] o~ (~) }/[(× + I )t0"(~)] 

(the function to t (0  was defined in (1.10)). 
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As can be seen £rom (3.1) and (1.6), the stresses will remain  bounded  as I El --> ~ only if the mapping 
funct ion (1.6) contains only the first two non-zero  terms, that is, m_k = 0 for  k >I 2, which corresponds 
to an elliptical inclusion. Thus,  if the con tour  L* is an ellipse, the solut ion constructed in Section 1 for  
the SSS in S may be cont inued  beyond L,  including an infinitely distant point  

As an example ,  consider the more  general  situation in which 

to(k)= R o ( ~ + m ~ - ' ) ,  0 < r a n < l ,  n ~  > I (3.2) 

where  the constants R0 and m may be considered to be real, and moreove r  m > 0 (this may always be 
ensured  by rotating the coordinate  axes in the z and ~ planes); n is a natural  number.  For  n = 1 the 
funct ion (3.2) is identical with the above-ment ioned mapping function of  the exterior  of  the ellipse onto 
the exterior  of  the unit  circle ~/* in the ~ plane. 
Substituting (3.2):into (3.1), we obtain 

(1¢+ I)(O 0 +O 0) = 4Re[A + I x C + ( ' B + p . D ) f 2 ( ~ ) / f 3 ( ~ ) ]  

(x + I) (6  o - 6 o + 2i600) = 262 { [(× - i)A - 2p. Re C ] f  2 (~) + (3.3) 

+(×B - I . tD) f , (~)  + (B" + I. tD)[(~ + m~-"  - ~- '  - m ~ ' )  (2(I  - m2n 3)~-3 + 

+mn(n - I)(~,,-2 + ~-,,-4 )) _ f 2  (~)f3 (~)]f3 -2 (4)} / f3 (~) 

. / i(~) = -t~ -2 + m n ~ ' - ' ,  £(t~) = I - mnt~ - ' - ° ,  ~ = e i° 

H ence  it follows that  for  n > 1 the principal terms determining the behaviour  of  the quantit ies 
indicated in (3.3) as = have the form 

(× + I)(~p + a e ) - 4ran Re (B + txD)~ "-z 

(× + I ) (o  o - Op + 2iop0) - -2m~n(2n - I)(B + ~tD)o2~ 2''-2 

Suppose the contour  7 in the ~ plane corresponding to the boundary  L is a circle of radius P0, that  
is, the mapping ment ioned  at the e n d  of  Section 1 has the form 

= to (pot , , ) ,  = poJr  

Then it is easy to derive from (3.3) an expression for cr 0 - &rp0 when ~ = p0cr, which determines the 
required external loads on L as functions of or. 

For n = 1 (an elliptical inclusion), well-known results [3] applied to (1.8), (1.10) and (3.2) yield the 
following relations between the stresses crk~ and the rotation e~ at infinity, on the one hand, and the 
analogous quantit ies in S*, on the o ther  

(× + I)F = A + ~tC+ m(B + I.tD) 

(× + I)F" = ×B - l.tD + m 1(× - I)A - 2~t Re C ] -  m2(-B + ~D)  (3.4) 

4F =- o ~  + o~2 + 8ilae °*/(× + I), 2F '  -= o_~ 2 - ou* ~ + 2iol~ 

It can be shown that,  if stability condit ions (2.2) (or  (2.3)) are satisfied, then  relations (3.4) and (2.1) 
are uniquely solvable as equat ions  in ¢r~t (k, l = 1, 2) and s*. Moreover ,  given the quantities F and F '  
in (2.2) or (2.3), it follows that  the SSS in the domain  S* U S is uniquely defined, that  is, under  the 
action of  these forces at infinity, the inclusion is subject to a uni form SSS as defined by (3.4) and (2.1). 

The proof of this fact is analogous to that presented in Section 2 and is as follows. Considering instead of S a 
finite elastic domain S, bounded by an outer contour L, which is a circle of radius r, we obtain the following expression 
for the difference of two possible solutions [4, 7] 

; A ,t o ,JS+ I AE 'A ;t'IS = I. I=- ; A',kt'p d, 
S, S * L, 

Letting r tend to infinity and taking into account that I--> 0 as r --> = [3], we obtain (2.4), which is possible only 
if Acr~t = 0 in S and Acr~t = 0 in S* (k, l = 1, 2). 



412 I. Yu. Tsvelodub 

4. C O N C L U D I N G  R E M A R K S  

As can be seen from the results obtained above, the inverse problem we have been considering has 
essentially been reduced to a problem of elasticity theory for a doubly connected domain S, with both 
displacements and loads given on the inner boundary L *, but with no conditions specified on the outer 
boundaryL (these conditions have to be determined). Such a problem has been studied before [8], and 
given the name of "the (u, p) problem". In the two-dimensional case, use has also been made [8] of 
boundary conditions of the form (1.7) with arbitrary functions Fk(tr) (k  = 1, 2)(that is, not necessarily 
corresponding to a uniform SSS in S*), which at once imply the following boundary condition on L* 
for ~(~) 

(× + l)~0(cr)= b ) ( ~ ) -  b](~) 

This reduces the problem to a well known problem [3]: to determine the functions q0(~) and ~(~) for 
[ ~ I > 1 on the basis of their boundary values at [ ~[ = 1. 

In this sense, it is obvious that the problem considered in this paper may be generalized as follows: 
it is to required to choose loads on L in such a way as to produce in S* a required (not necessarily 
uniform) SSS satisfying relations (1.2) (or, more specifically, (2.1)) and the usual equations for the 
equilibrium and compatibility of strains. This problem clearly reduces to "splicing" the SSSs in S* and 
S along the boundary L*, assuming that the stresses and strains satisfy the continuity conditions at L*. 
The solution of this problem is unique in the same sense as in Section 2. 

It is also obvious that the problem may be extended to the three-dimensional case, in which proper 
choice of the external loads must produce a given (uniform or non-uniform) SSS in a physically non- 
linear inclusion (PNLI). If tr~j and e~t (k, l = 1, 2) are known, the problem again reduces to the 
(u, p) problem, whose solution in the domain S is known to be unique [3, 8]. And conversely, as in Section 
2, given the external loads, the SSS in the three-dimensional domain S* U S is uniquely defined, as 
immediately follows from relations (2.1)-(2.4). In particular, in the case of an infinite domain S containing 
an ellipsoidal PNLI, a uniform SSS will be realized in the inclusion, provided that the stresses 
tr~ (k, 1 = 1, 2) are finite [2]. Methods have been developed for solving the three-dimensional (u, p) 
problem [8, 9]. 

The problem considered here, of creating a prescribed uniform SSS in a PNLI, may find application 
in connection with the problem of the optimal fracture of materials and elements of structures and 
buildings. This problem for a PNLI may be formulated as follows: for what external loads on L will the 
whole of S* be fractured simultaneously - instantaneously (assuming elastic-plastic deformation) or in 
a given time (assuming viscoelastic-plastic deformation or creep) with minimum energy consumption? 
Hote  that such optimal paths of deformation and fracture have been outlined for brittle and viscous 
materials under conditions of creep and uniform SSS [10]. 
This research was supported financially by the Russian Foundation for Basic Research (99-01-00551). 
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